

Anschaltung FAT 3000 (Feuerwehr-Anzeigetableau) an Bosch

Applikation

System3000-Dokumentation beachten!

1 Anschaltung des FAT3000 (nicht redundant)

Einstellungen BMZ-Interface:

- V24- oder 20mA-Schnittstelle
- Einstellung FAT
- 9600 Baud (9600,7,e,1)

BZ500: Textabfrage sperren: Konfiguration – System-Konfig - Alt-E – Spezial[0x] → [2] = 01!

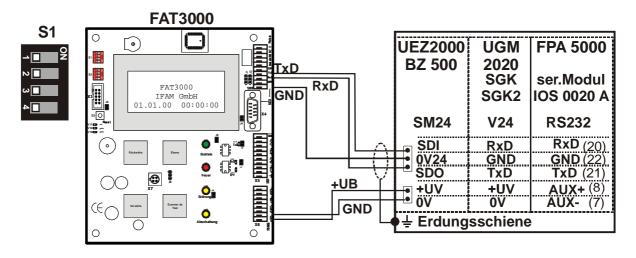


Abbildung 1: Anschaltung FAT3000 (nicht redundant) über RS232 an Bosch-BMZ

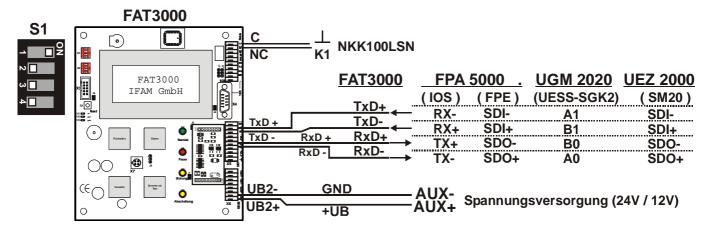


Abbildung 2: Anschaltung FAT3000 (nicht redundant) über 20mA an Bosch-BMZ

28.10.2014 Rev 1.9 FAT3000-Appl-Bosch_1-9.doc	Technische Änderungen vorbehalten!
---	------------------------------------

2 Anschaltung des FAT3000 (redundant)

Soll das FAT als Erstinformationsmittel verwendet werden, muss die Betriebsspannung durch ein EN54-konformes Netzteil realisiert werden.

Zur redundanten Anschaltung von FAT3000 wird in der Zentrale ein Redundanzadapter benötigt. Die Anschaltung an BMZ und FAT3000 ist für die folgenden Versionen identisch.

ADP-N3E Master-Adapter (Standard-Version) mit BMZ-Interface TTY (4-Draht) on Board

und mit Spannungsversorgung für FAT3000

ADP-N3E-U Master-Adapter (universelle Version) mit Modul-Steckplatz für BMZ-Interface

und mit Spannungsversorgung für FAT3000

ADP-N3S Slave-Adapter zur Einbindung weiterer BMZ in den Ring,

mit Steckplatz für Interface-Modul (BMZ-Interface)

keine Spannungsversorgung für FAT3000 (Anschlüsse UB1 – UB2 gebrückt),

RS485-Bus galvanisch isoliert;

2.1 Redundanzadapter ADP-N3x an RS232-Interface (V.24)

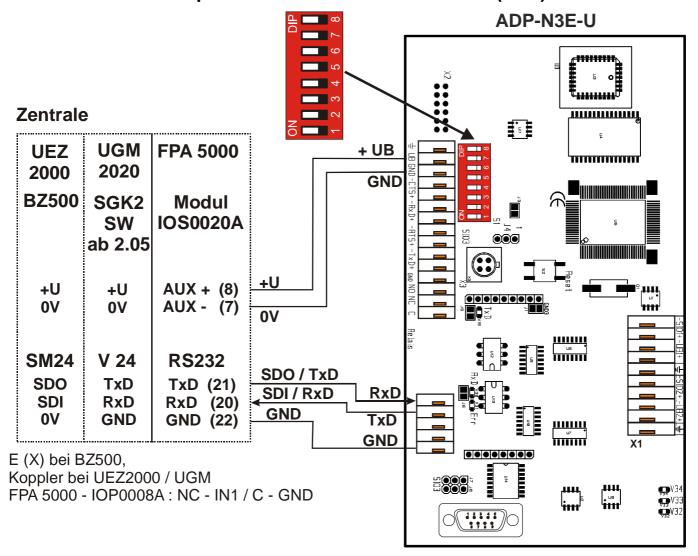


Abbildung 3: Anschaltung eines ADP-N3x an Bosch-BMZ RS232-Interface

2.2 Redundanzadapter ADP-N3x an 20mA-Interface (SM20)

Zum Anschluss an eine 20mA-Schnittstelle (SM20) wird auf dem ADP-N3E-U / ADP-N3S ein TTYB-Modul eingesetzt.

Zwischen ADP-N3x und Zentralen-Interface gelten folgende Verdrahtungsregeln:

FPA 5000			
IOS 0020 A			
TxD+	仚	RX-	
TxD-	Ŷ	RX+	
RxD+	1	TX+	
RxD-	Ţ.	TX-	

FPA 5000			
FPE-5000-UGM			
TxD+	Û	SDI-	
TxD-	Ŷ	SDI+	
RxD+	1	SDO-	
RxD-	û	SDO+	

UEZ2000 / BZ500			
(SM20)			
TxD+	⇧	SDI-	
TxD-	⇧	SDI+	
RxD+	ŧ.	SDO-	
RxD-	1	SDO+	

UGM2020			
UESS – SGK2			
TxD+	仚	A1	
TxD-	Û	B1	
RxD+	1	B0	
RxD-	1	A0	

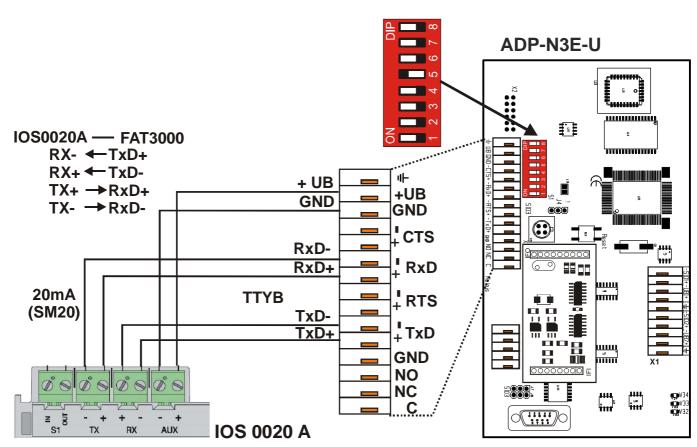


Abbildung 4: Anschaltung eines ADP-N3x an IOS0020A - 20mA-Interface

Die Stellung der DIL-Schalter gilt für ADP-N3E-U und ADP-N3S.

2.3 Verdrahtungsvorschrift für System3000 – Komponenten

Die Anschaltung des FAT3000 an den Adapter ADP-N3E(-U) / ADP-N3S erfolgt über redundante Verbindungen in Ringbusstruktur (je mit Betriebsspannung und RS485-Bus). Die Kabel der beiden Systeme sind getrennt zu verlegen! Zur Vermeidung von Schäden ist auf die richtige Polung der Betriebsspannung zu achten! Die Trennerfunktion im Falle eines Kurzschlusses der Betriebsspannung realisieren ADP-N3E bzw. FAT3000.

Es muss immer SIO1 mit SIO2 und UB1 mit UB2 verdrahtet werden.

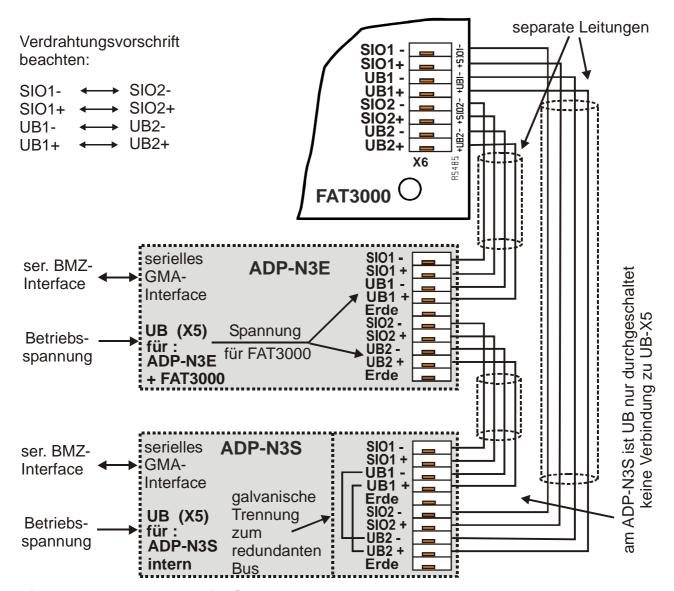


Abbildung 5: Verdrahtung im System3000

Hinweis zur RS485:

Zwischen SIO1 + und SIO1 – (bzw. SIO2 + und SIO2 –) sind Differenzspannungen im 5V-Bereich messbar, wobei Leitung SIO1 + in Ruhe (Signal=1) höheres Potential führt (Mittelwert ca. 2,5V, bei aktiven Teilnehmern typisch SIO1+ = 3,8..4,5 V, SIO1- = 0,5..1,0 V, wenn kein Sender aktiv typisch: SIO1+ = 2,5 V und SIO1- = 2,3 V).

2.4 Anschaltung eines redundanten FAT3000 an System3000-Bus

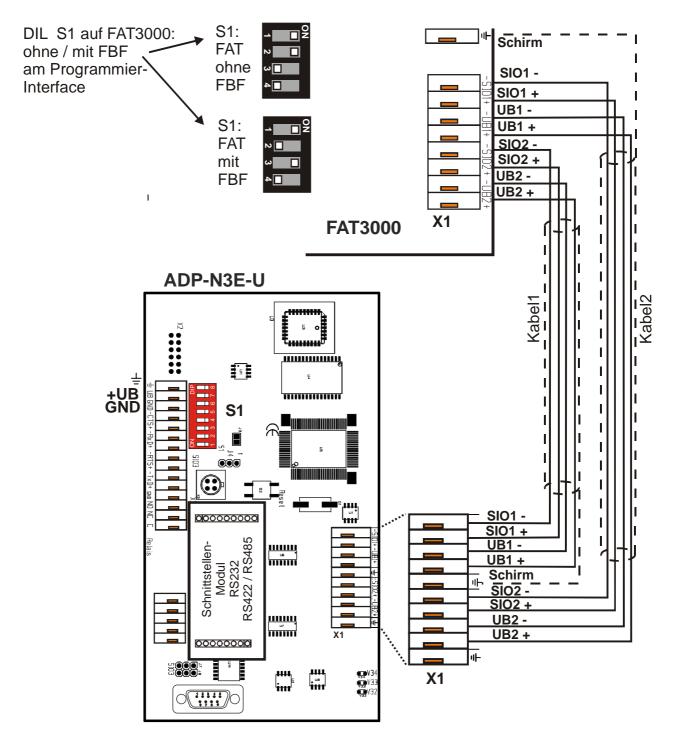


Abbildung 6: Anschaltung von einem FAT3000 redundant

2.5 Anschaltung von zwei redundanten FAT3000 an System3000-Bus

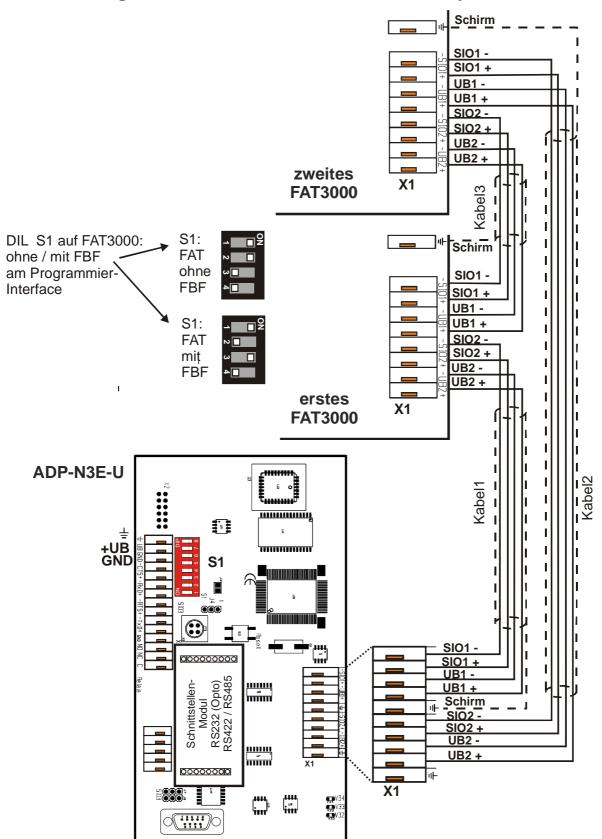


Abbildung 7: Anschaltung von zwei FAT3000 redundant

3 FBF-Adapter ADP-FBF / ADP-LSN

3.1 ADP-FBF – paralleles FBF Interface

Die FBF-Adapterbaugruppe ADP-FBF wird auf den Redundanz-Adapterbaugruppen ADP-N3E(-U) / ADP-N3Sund ADP-N3S montiert. Der FBF-Adapter wird an das parallele FBF-Interface der Zentrale angeschlossen. Die Übertragung der FBF-Signale erfolgt seriell über den redundanten Ring. Diese Signale werden von einem FAT ausgewertet und an ein seriell angeschlossenes FBF gesendet.

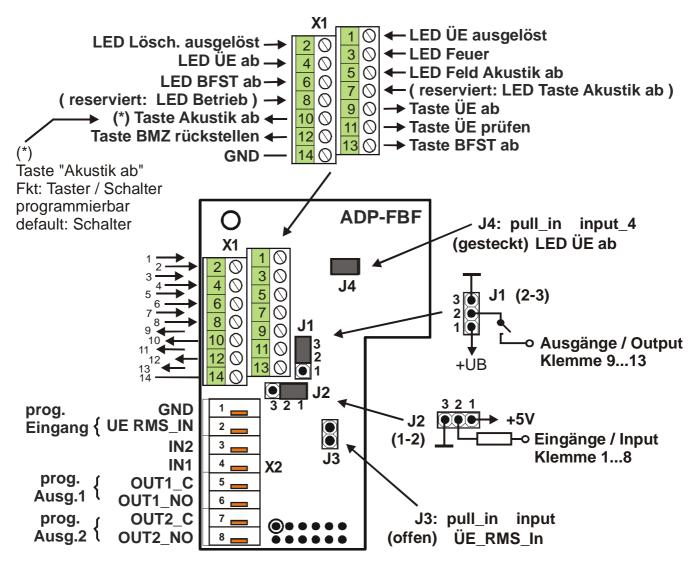


Abbildung 8 : Anschlussbelegung des ADP-FBF

Jumper	Тур	Bedeutung
J1	Steckbrücke	2-3 die Ausgänge/ Tasten schalten nach 0V
J2	Steckbrücke	1-2 Abschluss der zugehörigen LED-Schaltung nach +5V.
J3	Steckbrücke	offen - reserviert (UE_RMS_IN)
J4	Steckbrücke	geschlossen - reserviert (LED UE ab)

3.2 ADP-FBF an UEZ 2000

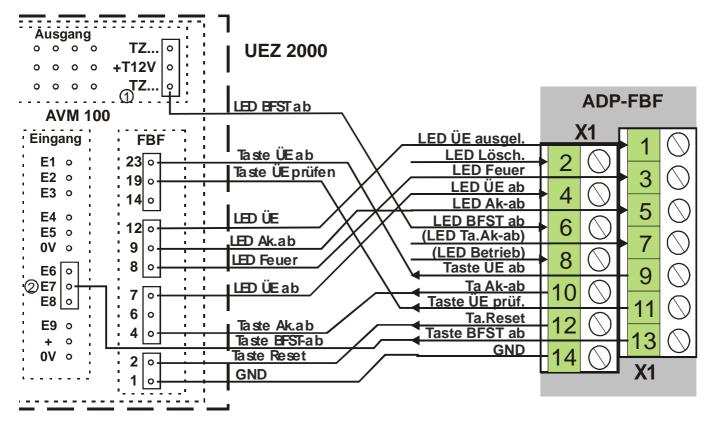


Abbildung 9: Verdrahtung FBF-Anschluss UEZ2000 an ADP-FBF

- ① Anzeige "Brandfallsteuerung ab" mit dem zuvor parametrierten Schaltpunkt (z.B. TZ...) verbinden!
- ② Taste "Brandfallsteuerung ab" mit BMZ-Eingang E7 verbinden

Anschalt-Referenzen zu AVM100:

AVM100		ADP-FBF	
FBF-23	+	Taste ÜE ab	9
FBF-19	+	Taste ÜE prüfen	11
FBF-12	→	LED ÜE ausgelöst	1
FBF-9	→	LED Feld Akustik ab	5
FBF-8	→	LED Feuer	3
FBF-7	→	LED ÜE ab	4
FBF-4	+	Taste Akustik ab	10
FBF-2	+	Taste BMZ rückstellen	12
FBF-1		GND	14
Eingang E7	←	Taste BFST ab	13
Ausgang TZ (Schaltpunkt)	→	LED BFST ab	6
	→	LED Löschanlage ausgelöst	2
		LED Taste Akustik ab	7
		LED Betrieb	8

3.3 ADP-FBF und ADP-ÜE an UGM 2020

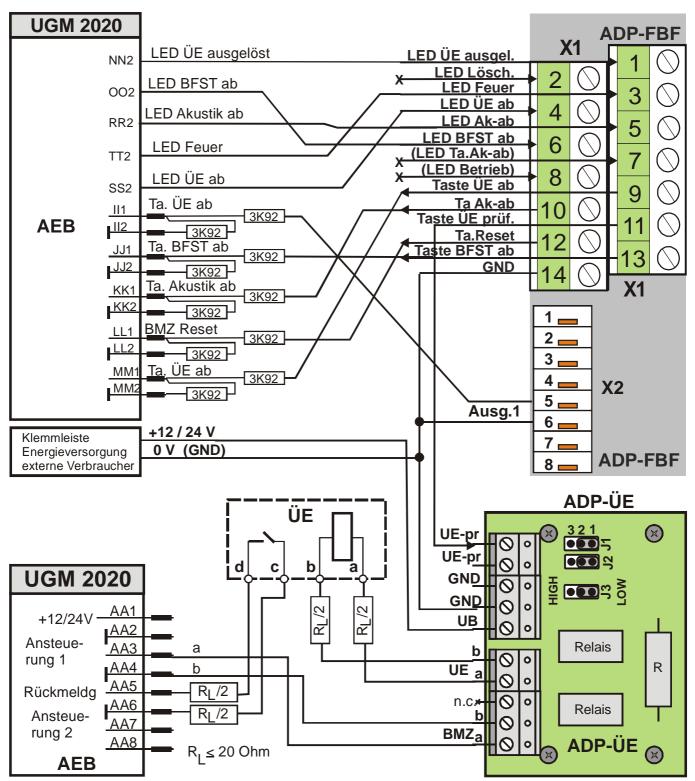
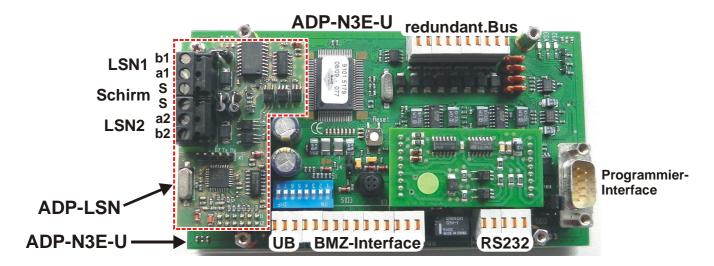



Abbildung 10: Verdrahtung FBF-Anschluss UGM2020 an ADP-FBF und ADP-ÜE

3.4 ADP-LSN – Ankopplung an den LSN-Bus

Der FBF-Adapter ADP-LSN wird auf einen Redundanz-Adapter ADP-N3E(-U) / ADP-N3S aufgesteckt. Der ADP-LSN dient zur Anschaltung des System3000 an den LSN-Bus und fungiert als FBF100LSN. Die FBF-Daten werden vom LSN-Bus übernommen bzw. zum LSN-Bus übertragen. Die Anschaltung an das LSN erfolgt analog zum FBF100LSN.

Anschlussbelegung des ADP-LSN:

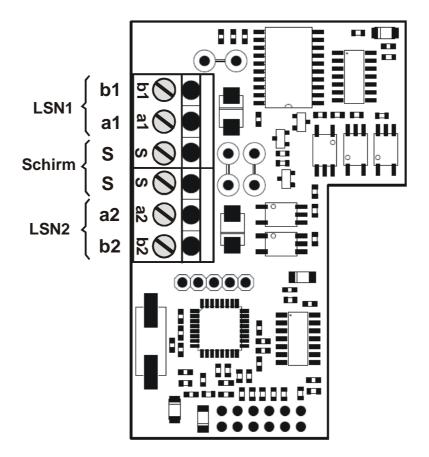


Abbildung 11: ADP-LSN - FBF-Adapter zur Kopplung System3000 an LSN

4 Anschaltung eines seriellen FBF an FAT3000

Ein serielles FBF kann an einem FAT3000 im System3000-Ring angeschaltet werden. Die FBF-Daten werden zwischen dem FBF und dem FBF-Adapter über den System3000-Bus übertragen.

4.1 FBF3000 an FAT3000 – Standardapplikation

Das FBF3000 ist speziell für den Einsatz am FAT3000 konzipiert. Der Anschluss erfolgt über ein 10-poliges Flachbandkabel. Das Flachbandkabel darf nicht über oder unter den Baugruppen entlang geführt werden!

Das FBF3000 wird automatisch erkannt - eine Programmierung ist nicht erforderlich. Die DIL-Schalter S1 entsprechen dem redundanten Betrieb ohne serielles FBF.

In der Zentrale befinden sich der Redundanzadapter ADP-N3E(-U) mit dem ADP-FBF bzw. ADP-LSN und bei Bedarf (z.B. UGM2020) der ADP-ÜE (s. Abschnitt 3.3).

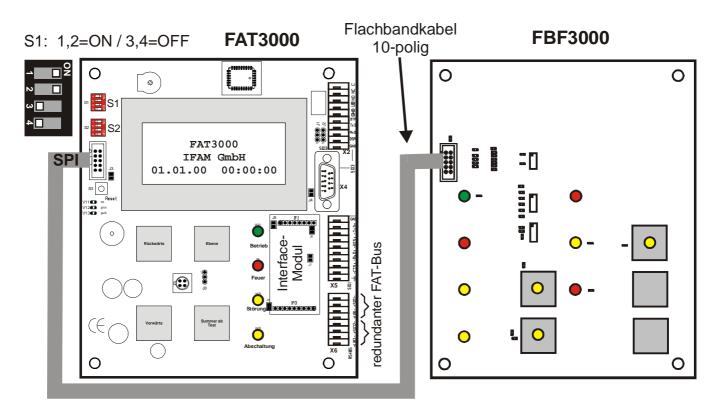


Abbildung 12: Anschluss FBF3000 an FAT3000 (redundant)

Flachbandkabel nicht über oder unter den Baugruppen verlegen!

Wird ein FBF3000 am FAT3000 betrieben, so erfolgt die Einstellung der DIP-Schalter und Jumper am FAT entsprechend der Applikation ohne FBF am FAT3000: Das FBF3000 wird automatisch erkannt.

4.2 FBF2003-seriell an FAT3000

Das FBF2003-seriell wurde in früheren Applikationen eingesetzt. Die

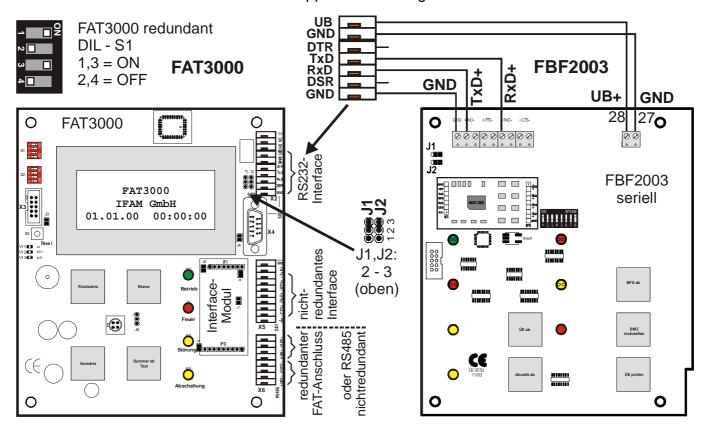


Abbildung 13: Anschluss FBF2003-seriell an FAT3000 (redundant)

Wird ein FBF2003 seriell am FAT3000 betrieben, so muss auf die richtige Einstellung der DIP-Schalter und Jumper am FAT geachtet werden:

S1: DIP1 und DIP3 auf ON (alle anderen DIP's OFF) **J8**: Stellung 1-2 (oben), Auswahl RS232 an X2 oder X4 **J1, J2**: Stellung 2-3 (oben), Auswahl Klemmanschluss X2

Wird mehr als ein FAT3000 im redundanten Ring betrieben, so muss das FBF2003 von der BMZ separat mit Betriebsspannung versorgt werden

Achtung!

Eine Spannungsversorgung vom FAT3000 ist dann nicht mehr zulässig! Auf dem FBF2003-seriell ist eine galvanisch getrennte RS232-Schnittstelle zu realisieren – Erdschluss! (RS232-Opto, J1+J2 auf FBF2003 offen!)

Wird die ÜE über das FBF geführt, weil Funktionen wie z.B. "FBF prüfen" durch das FBF realisiert werden müssen, kann eine Version des FBF2003-seriell mit ÜE-Steuerung eingesetzt werden.

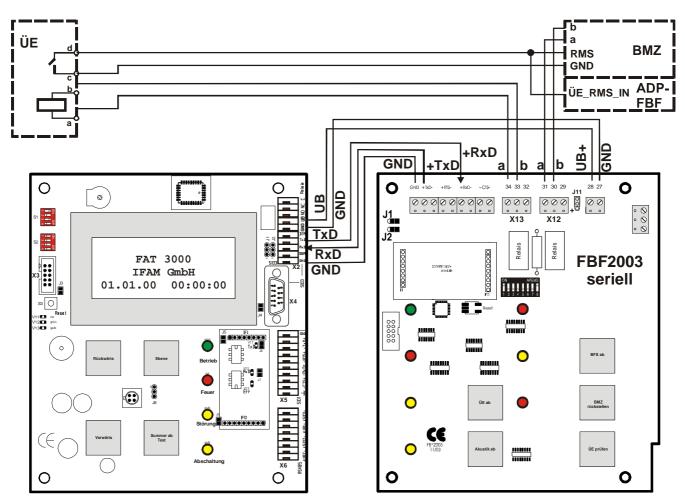
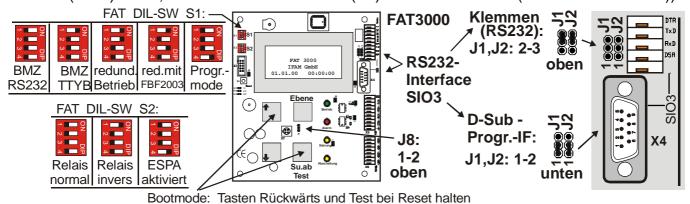


Abbildung 14: Anschluss FBF2003-seriell mit ÜE-Steuerung an FAT3000 (redundant)

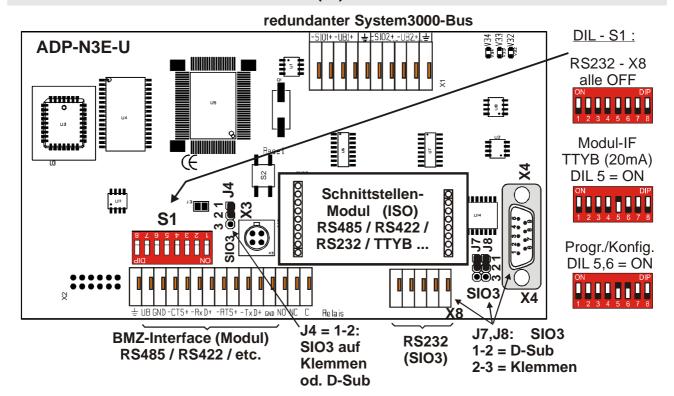

5 FAT3000, ADP-N3x, DIP-Schalter, Jumper, Diagnose-LED

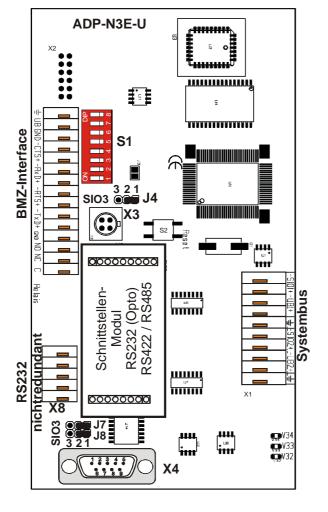
5.1 FAT3000

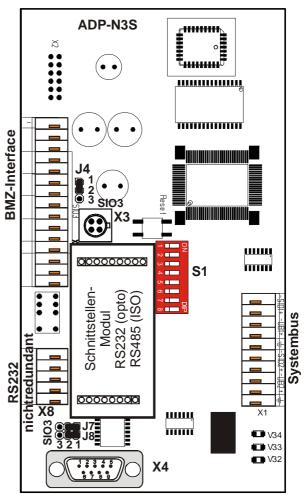
5.1.1 FAT3000 - Steck-Jumper

J8 = 1-2 (oben) J1,J2: SIO-3 \Rightarrow 1-2 = D-Sub (X4) 2-3 = Klemmen (oberhalb des D-Sub))

bootinode. Tasteri Nuckwarts und Test bei N

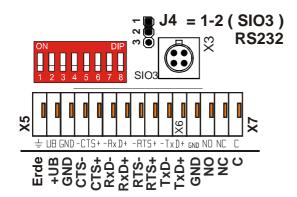

B

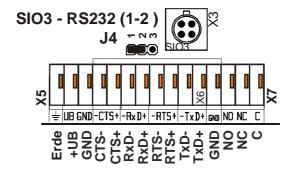

Programmierung redundantes FAT : Zuerst ADP-N3E(-U) in Boot-Mode versetzen! (s. ADP-N3x-Firmware-Update)



5.2 ADP-N3E-U / ADP-N3S

ADP-N3E(-U) / ADP-N3S

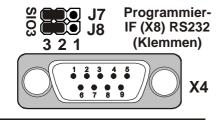


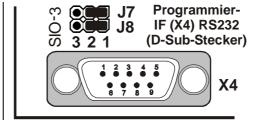


Steck-Jumper J4

ADP-N3E / ADP-N3E-U

ADP-N3S





Steck-Jumper J7,J8 ADP-N3x

Auswahl RS232 auf Steckklemmen X8:

Auswahl RS232 auf D-Sub-Stecker X4:

5.3 DIP-Schalter

5.3.1 DIP-Schalter am FAT3000

Nach Änderung der DIP-Schalterstellung ⇒ immer Reset !

	FAT3000 – DIP-Schalterblock S1				
DIP1	DIP2	DIP3	DIP4	Bedeutung	
OFF ON	OFF OFF	OFF OFF	OFF OFF	Kommunikation mit UEZ/BZ500/UGM/FPA (RS232) Kommunikation über Modul-Interface TTYB	
ON ON	ON OFF	OFF ON	OFF OFF	redundantes Protokoll aktiviert, kein FBF2003-seriell redundantes Protokoll + serielles FBF2003 am FAT	
OFF	OFF	OFF	ON	Programmierung aktiv	

	FAT3000 – DIP-Schalterblock S2				
DIP1	DIP2	DIP3	DIP4	Bedeutung	
OFF	-	-	-	Relaisansteuerung normal	
ON	-	-	-	Relaisansteuerung invers → nicht bei FBF3000! **	
-			-	reserviert	
-	-	-	ON	ESPA-Protokoll aktiviert (zusätzliche Schnittstelle)	

	DI	P – S1 auf FAT3	000	
	edundant ⊐⇒ FAT-Interface		ter Betrieb DP-N3x	Programmier- betrieb
ON 2	ON 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ON 2	ON 2 1 2 3 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ON 2 1 1 2 3 1 4 1 1 1
BMZ- Kommunikation	BMZ Kommunikation	am redundanten Ring mit / ohne	am redundanten Ring	Programmier- betrieb
über RS232 - SIO3 Interface	über TTYB – Modul- Interface (20mA)	FBF3000 kein FBF2003 an SIO3	mit FBF2003ser an SIO3	

5.3.2 DIP-Schalter am ADP-N3E(-U) / ADP-N3S

Nach Änderung der DIP-Schalterstellung ⇒ immer Reset!

	ADP-N3x – DIP-Schalterblock S1				
DIP1	DIP2	DIP3	DIP4	Bedeutung	
OFF	-	-	-	Relaisansteuerung normal	
ON	-	-	-	Relaisansteuerung invers	
-			-	reserviert	
-	-	-	ON	ESPA aktiviert	
DIP5	DIP6	DIP7	DIP8	Bedeutung	
OFF	OFF	OFF	OFF	Standardkommunikation mit UEZ/UGM/FPA (RS232)	
ON	OFF	OFF	OFF	Kommunikation über Interface-Modul TTYB	
011	6 11	055	055	Barrier and C	
ON	ON	OFF	OFF	Programmierung aktiv	
-	-	-	ON	Reserviert	

DISP-Schalter S1 auf ADP-N3x

BMZ-Kommunikation über RS232 - SIO3 Interface X8 oder X4

BMZ Kommunikation über TTYB (20mA) – Modul-Interface X5 – X6 – X7

Programmierbetrieb für Konfiguration (Kundendaten)

5.4 Diagnose-LED's

5.4.1 Diagnose-LED am FAT3000

LED	Farbe	Bedeutung
V11	rot	Fehlerzustand Spannungsversorgung: aus – kein Fehler, alles in Ordnung Blinkcode 1 x kurz – Störung Betriebsspannung UB1 Blinkcode 2 x kurz – Störung Betriebsspannung UB2 Blinkcode kurz/lang/kurz – sonstiger Fehler ein – Fehler an Betriebsspannung UB1 und UB2
V12	grün	Betriebszustand: aus – Telegrammpause kurzes unregelmäßiges Blitzen – Kommunikation ist aktiv
V13	gelb	Störung der Kommunikation: aus – keine Störung, alles in Ordnung Blinkcode 1 x kurz – Störung Kommunikation Bus 1 Blinkcode 2 x kurz – Störung Kommunikation Bus 2 Blinkcode kurz/lang/kurz – sonstige Störung ein – Störung Kommunikation Bus 1 und Bus 2

5.4.2 Diagnose-LED am ADP-N3E(-U) / ADP-N3S

LED	Farbe	Bedeutung
V32	rot	Fehlerzustand Spannungsversorgung: aus – kein Fehler Blinkcode 1 x kurz – Störung Betriebsspannung UB1 Blinkcode 2 x kurz – Störung Betriebsspannung UB2 Blinkcode kurz/ lang/ kurz – sonstiger Fehler ein – Fehler an Betriebsspannung UB1 und UB2
V33	gelb	Sammelstörung: aus – keine Störung ein – Störung vorhanden, Störungsrelais ist geöffnet
V34	grün	Betriebszustand: Blinken an (0,8 sec)/ aus (1,2 sec) – Verbindungsaufbau zum FAT Blinkcode 1 x kurz – Verbindung über red. Bus zum FAT Lauflicht(grün-> gelb-> rot) – kein redundantes Protokoll eingestellt, Programmiermode aktiv Blinkcode 3 x kurz – FAT-Startprogramm ist aktiv kurzes schnelles Blitzen ohne Pause – tritt nur nach mehrmaligem Reset in kurzer Zeit auf, ADP-Startprogramm wird aktiviert

6 Programmierung - Kurzanleitung

ADP-N3E(-U) / ADP-N3S

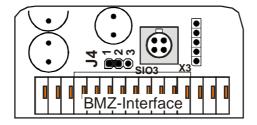
Konfiguration (Kundendaten-Datei *.fat):

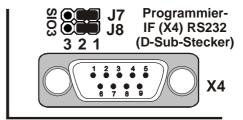
- DIL-Schalter 5+6 = ON ⇒ Reset ⇒ Programmierbetrieb
- Start der Programmierung

 □ "Transfer"

 □ "Konfigurationsdaten"
- Ende Programmierung abwarten ⇒ DIL-Schalter wieder in Betriebs-Einstellung ⇒ Reset

Firmware-Update (ADP-N3x Bootmode, Firmware-Datei *.hex):

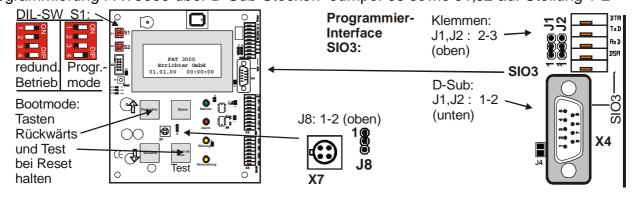

- Taste Reset 4 x betätigen im Abstand von je 0,5...1 sec.


 ⇒ Bootmode
- grüne LED V34 blinkt mehrfach, Pause, danach wiederholender Zyklus: 3 x kurz, 1sec Pause
- Start der Firmware-Übertragung "Transfer"

 ¬ "Firmware laden"
- Programmierung bis Ende abwarten
- Reset

RS232-Interface (SIO-3)
D-Sub-Stecker:
Steckjumper

J4 = 1-2, J7.J8 = 1-2



FAT3000

Redundantes FAT: ADP-N3E(-U) in Boot-Mode versetzen ! (s. ADP-N3x-Firmware-Update \hat{v}) **Konfiguration** (Kundendaten-Datei *.fat) :

- S1-DIP4 = ON, alle anderen DIP = OFF
- Reset ⇒ Start der Programmierung: "Transfer" ⇒ "Konfigurationsdaten" ⇒ "Start"
- Ende Programmierung abwarten ⇒ DIL-Schalter wieder in Betriebs-Einstellung ⇒ Reset *Firmware-Update* (Firmware-Datei *.hex):
 - Taste "û" + "Test" festhalten ⇒ Reset ⇒ Tasten loslassen ⇒ LCD-Anzeige Boot.Mode
 - Start der Firmware-Übertragung: "Transfer" ⇒ "Firmware laden" ⇒ "Start"
 - Ende Programmierung abwarten ⇒ Reset

Programmierung FAT3000 über D-Sub-Stecker: Jumper J8 sowie J1,J2 auf Stellung 1-2

IFAM GmbH Erfurt

Ingenieurbüro für die Anwendung der Mikroelektronik in der Sicherheitstechnik Parsevalstraße 2 , D-99092 Erfurt

Tel. +49 – 361 – 65911 -0 Fax. +49 – 361 – 6462139 ifam@ifam-erfurt.de www.ifam-erfurt.de www.ifam.eu

